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Lecture 10 Highlights 
Phys 402 

 
The Helium Atom 
 Let’s move beyond Hydrogen to the next interesting case, the Helium atom.  The 
neutral 4He atom has two electrons bound to a nucleus made up of two protons and two 
neutrons.  We wish to find the eigenenergies and eigenfunctions of the Helium atom.  In 
doing so we will discover some interesting new physics. 
 There are two electrons orbiting a nucleus of charge e2+ .  We shall treat this as a 
perturbation problem.  The un-perturbed Hamiltonian is that of the two electrons 
independently orbiting the same nucleus: 
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where the Laplacian operators only operate on the spherical coordinates of either particle 
1 or particle 2.  Note that the electrons are identical, they have exactly the same mass and 
charge. 
 What remains is the Coulomb repulsion between the two electrons.  We shall treat 
this as a perturbation: 

 
2104

))(('
rr

ee


−
−−

=Η
πε

        (2) 

 The solution to the un-perturbed Schrödinger equation is a wavefunction that 
depends on 6 coordinates: 
 000 Ψ=ΨΗ TE         (3) 

where ),,,,,( 222111
00 φθφθ rrΨ=Ψ .  This wavefunction has the following probabilistic 

interpretation.  2
3

1
32

222111
0 |),,,,,(| xdxdrr φθφθΨ is the probability of finding particle 1 

within a differential volume 1
3xd of location ),,( 111 φθr and finding particle 2 within a 

differential volume 2
3 xd of location ),,( 222 φθr . 

Unlike the Hydrogen atom, there is no exact analytical solution to the Helium atom 
Schrodinger equation.  This is related to the fact that the classical 3-body problem cannot 
be solved analytically either.  In other words, for the classical 3-body problem no general 
closed-form solution exists.  Ultimately, we must use either numerical methods or 
approximation schemes to solve the Helium atom Schrodinger equation. 

To proceed, we try an ansatz which we believe will lead to separation of variables 
as 
 )2()1(),,,,,( 222111

0
barr ψψφθφθ =Ψ  

where “1” and “2” represent all of the coordinates of particles 1 and 2, respectively, and 
“a” and “b” are different lists of quantum numbers, in general.  This assigns electron 1 to 
state “a” and particle 2 to state “b”.  Putting this ansatz into (3) and dividing through by 
the product wavefunction gives two Hydrogenic Schrödinger equations and an algebraic 
constraint: 
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https://en.wikipedia.org/wiki/Three-body_problem
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with the constraint baT EEE += .  Note that the solutions to these equations are the 
hydrogen atom wavefunctions with 0/ ar replaced by 0/ aZr , where Ze is the nuclear 
charge ( 2=Z for Helium).  This changes the unperturbed energy levels to 𝐸𝐸𝑛𝑛0 =
−𝑍𝑍2 13.6 𝑒𝑒𝑒𝑒/𝑛𝑛2. 
 Thus it would appear that we have solved the un-perturbed Schrödinger equation 
for the Helium atom as )2()1(0

ba ψψ=Ψ .  However there is an important inconsistency in 
this argument.  The solution has implicitly assumed that we can distinguish which electron 
is in which state (“a” or “b” in this case).  However when two electrons “collide” (i.e. their 
wavefunctions overlap, as in the He atom) they loose their unique identity.  They are not 
only identical but indistinguishable.  Indistinguishability is a tremendously important 
concept in quantum mechanics.  It means that when we construct multi-identical-particle 
wavefunctions (in which the particles have overlapping wavefunctions) we must be very 
careful to honor their indistinguishability.  For example we cannot insist that electron 1 is 
in state “a” while electron 2 is in state “b” in the He atom.  If one of the electrons is 
subsequently ionized from the atom we cannot tell which one it “originally” was. 
 When two identical particles “collide” we must make a new kind of wavefunction 
that describes the composite state.  Note that perfect distinguishability is implicitly 
assumed in much of classical physics. 
 For a clue as to how to proceed we re-examined the wavefunctions created when 
combing 2 identical spin-1/2 particles covered in discussion 3.  These are the spin triplet 
wavefunctions (|1 1⟩, |1 0⟩, |1 − 1⟩) and the spin singlet wavefunction (|0 0⟩).  These 4 
wavefunctions respect the indistinguishability of the two particles.  If you extract one 
particle from any of these states and ask what is it’s spin orientation, you will get an answer 
which treats the two particles on equal footing.  You will not be able to say “aha, particle 
1 was in the ‘up’ state in |1 0⟩” for example.  The four eigenstates do not give any 
preference to either of the two particles.  It respects their indistinguishability.  We need to 
use this idea to make a better Helium atom wavefunction than )2()1(0

ba ψψ=Ψ . 
 Consider a 2-identical-particle wavefunction )2,1(Ψ .  Define a permutation (or 
“exchange”) operator 𝑃𝑃� that exchanges all of the coordinates of two particles in the 
wavefunction: 
 𝑃𝑃�Ψ(1,2) = Ψ(2,1)  
If we apply this operator twice, we get back to the same wavefunction: 
 𝑃𝑃�2Ψ(1,2) = 𝑃𝑃�Ψ(2,1) = Ψ(1,2)      
In other words, this says that 𝑃𝑃� 2 = 1�, or that the eigenvalues of 𝑃𝑃� are 1± .  If in addition 
we have a symmetric potential for the two identical particles: ),(),( 1221 rrVrrV 

= , then 𝑃𝑃�  
and ℋ�  are compatible operators (�𝑃𝑃�,ℋ�� = 0) and we can form a complete set of 
simultaneous eigenfunctions that will have the property: )1,2()2,1( Ψ±=Ψ .  The plus sign 
denotes symmetric wavefunctions, while the minus sign denotes anti-symmetric 
wavefunctions.  Thinking back to the problem of two (identical) spin-1/2 particles in the 
coupled representation, recall that we found two classes of states, the triplet states 
(|1 1⟩, |1 0⟩, |1 − 1⟩) and the singlet state (|0 0⟩).  Note that the triplet states have 
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eigenvalue +1 under the 𝑃𝑃� operator, while the singlet state has eigenvalue -1 under 𝑃𝑃�.  
Hence, these states also respect the indistinguishability of the two particles involved. 
 The spin-statistics theorem states that all particles with integer spin (called Bosons) 
have overall symmetric wavefunctions for multi-identical-particle systems.  Also, particles 
with half-integer spin (called Fermions) have overall anti-symmetric wavefunctions for 
multi-identical-particle systems.  
 Going back to Helium, because the two identical electrons are spin-1/2 particles, 
we need to construct an overall antisymmetric wavefunction.  One possibility (for the space 
part of the wavefunction) is this: 

 ( ))1()2()2()1(
2

1),,,,,( 222111
0

babaA rr ψψψψφθφθ −=Ψ  

Check to see that )1,2()2,1( 00
AA Ψ−=Ψ , as advertised.  Note that this wavefunction puts 

electrons into states “a” and “b” of the He atom, but does not make the mistake of saying 
explicitly which electron is in which state.  It maintains the anonymity and 
indistinguishability of the two electrons.  Learning how to write down such wavefunctions 
is an art form that you must learn (the homework problems will give you some guidance). 

Note that the anti-symmetric space wavefunction: 

( ))1()2()2()1(
2

1)2,1(0
babaA ψψψψ −=Ψ  

has a peculiar property.  If both particles are in the same single-particle state (i.e. the lists 
of quantum numbers ba = ), then the wavefunction is zero!  This remarkable property is 
shared by much more sophisticated multi-identical-particle Fermionic wavefunctions and 
is called the Pauli Exclusion Principle.  It says that no two Fermions in a multi-identical-
particle composite Fermion (overall anti-symmetric) wavefunction can occupy the same 
exact single-particle quantum state. 
 This principle now constrains the types of He atom wavefunctions we can write 
down.  If we now explicitly include spin of the electrons, and assume the wavefunctions 
are product states of space and spin wavefunctions, they can only be of the form: 
 )2,1()2,1(~)2,1(0

SymmetricAntiSymmetric −Ψ χψ , 
or  
 )2,1()2,1(~)2,1(0

SymmetricSymmetricAnti χψ −Ψ , 
where ψ represents the space-part of the wavefunction and χ represents the spin part of 
the wavefunction (here it is assumed that the He-atom wavefunction can be factorized like 
this).  A symmetric space wavefunction that respects indistinguishability can be written in 
this way, for example (inspired by the spin-triplet state |1 0⟩): 

 ( ))1()2()2()1(
2

1)2,1(0
babaS ψψψψ +=Ψ  

But what about symmetric and anti-symmetric spin wavefunctions χ ?  It turns out that we 
already have them, at least for the combination of two identical spin-1/2 particles.  The 
spin triplet states ( 11,10,11 − ) are symmetric under permutation (also called exchange) 

of the two particles, while the spin singlet state ( 00 ) is antisymmetric.  Fantastic! 
 We now have 4 candidate He atom wavefunctions: 
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 ( )11)1()2()2()1(
2

1)2,1(0
babaHe ψψψψ −=Ψ  

or 

 ( )10)1()2()2()1(
2

1)2,1(0
babaHe ψψψψ −=Ψ  

or 

 ( ) 11)1()2()2()1(
2

1)2,1(0 −−=Ψ babaHe ψψψψ  

or 

 ( ) 00)1()2()2()1(
2

1)2,1(0
babaHe ψψψψ +=Ψ  

 


